|
|
/* -*- Mode: js; js-indent-level: 2; -*- */ /* * Copyright 2011 Mozilla Foundation and contributors * Licensed under the New BSD license. See LICENSE or: * http://opensource.org/licenses/BSD-3-Clause
*/
// It turns out that some (most?) JavaScript engines don't self-host
// `Array.prototype.sort`. This makes sense because C++ will likely remain
// faster than JS when doing raw CPU-intensive sorting. However, when using a
// custom comparator function, calling back and forth between the VM's C++ and
// JIT'd JS is rather slow *and* loses JIT type information, resulting in
// worse generated code for the comparator function than would be optimal. In
// fact, when sorting with a comparator, these costs outweigh the benefits of
// sorting in C++. By using our own JS-implemented Quick Sort (below), we get
// a ~3500ms mean speed-up in `bench/bench.html`.
function SortTemplate(comparator) {
/** * Swap the elements indexed by `x` and `y` in the array `ary`. * * @param {Array} ary * The array. * @param {Number} x * The index of the first item. * @param {Number} y * The index of the second item. */ function swap(ary, x, y) { var temp = ary[x]; ary[x] = ary[y]; ary[y] = temp; }
/** * Returns a random integer within the range `low .. high` inclusive. * * @param {Number} low * The lower bound on the range. * @param {Number} high * The upper bound on the range. */ function randomIntInRange(low, high) { return Math.round(low + (Math.random() * (high - low))); }
/** * The Quick Sort algorithm. * * @param {Array} ary * An array to sort. * @param {function} comparator * Function to use to compare two items. * @param {Number} p * Start index of the array * @param {Number} r * End index of the array */ function doQuickSort(ary, comparator, p, r) { // If our lower bound is less than our upper bound, we (1) partition the
// array into two pieces and (2) recurse on each half. If it is not, this is
// the empty array and our base case.
if (p < r) { // (1) Partitioning.
//
// The partitioning chooses a pivot between `p` and `r` and moves all
// elements that are less than or equal to the pivot to the before it, and
// all the elements that are greater than it after it. The effect is that
// once partition is done, the pivot is in the exact place it will be when
// the array is put in sorted order, and it will not need to be moved
// again. This runs in O(n) time.
// Always choose a random pivot so that an input array which is reverse
// sorted does not cause O(n^2) running time.
var pivotIndex = randomIntInRange(p, r); var i = p - 1;
swap(ary, pivotIndex, r); var pivot = ary[r];
// Immediately after `j` is incremented in this loop, the following hold
// true:
//
// * Every element in `ary[p .. i]` is less than or equal to the pivot.
//
// * Every element in `ary[i+1 .. j-1]` is greater than the pivot.
for (var j = p; j < r; j++) { if (comparator(ary[j], pivot, false) <= 0) { i += 1; swap(ary, i, j); } }
swap(ary, i + 1, j); var q = i + 1;
// (2) Recurse on each half.
doQuickSort(ary, comparator, p, q - 1); doQuickSort(ary, comparator, q + 1, r); } }
return doQuickSort; }
function cloneSort(comparator) { let template = SortTemplate.toString(); let templateFn = new Function(`return ${template}`)(); return templateFn(comparator); }
/** * Sort the given array in-place with the given comparator function. * * @param {Array} ary * An array to sort. * @param {function} comparator * Function to use to compare two items. */
let sortCache = new WeakMap(); exports.quickSort = function (ary, comparator, start = 0) { let doQuickSort = sortCache.get(comparator); if (doQuickSort === void 0) { doQuickSort = cloneSort(comparator); sortCache.set(comparator, doQuickSort); } doQuickSort(ary, comparator, start, ary.length - 1); };
|